\qquad

Section 10.2 Plane Curves and Parametric Equations

Until now, we have been studying curves that were represented by a single equation in two variables. In this section, we will consider curves that are defined using three variables, and these curves will be represented by a "system" of two equations in two variables, the one variable common to both equations is called the parameter. The "system" of two equations in two variables will be called parameter equations. In this section, we will write x as $x=x(t)$ and y as $y=y(t), x$ and y will both be functions of t, a parametric variable. At times, we will write x as $x=x(\theta)$ and y as $y=y(\theta), x$ and y will both be functions of θ, a parametric variable.

Definition of a Plane Curve

If f and g are continuous functions of t on an interval I, then the equations

$$
x=f(t) \quad \text { and } \quad y=g(t)
$$

are called parametric equations and t is called the parameter. The set of points (x, y) obtained as t varies over the interval I is called the graph of the parametric equations. Taken together, the parametric equations and the graph are called a plane curve, denoted by C.

$x(t)=t^{3}-3 t \quad \& y(t)=3 t^{2}-9 \quad x(t)=2 \cos t \quad \& y(t)=4 \sin t$

$x(t)=t^{2}+1 \quad \& \quad y(t)=t+2$

Ex. 1: Sketch the curve represented by the parametric equations and write the corresponding rectangular equation by eliminating the parameter. Complete the table.
$\left\{\begin{array}{l}x(t)=t^{2}+t \\ y(t)=t^{2}-t\end{array}\right.$ for $t \in[-3,3]$

t	$x(t)$	$y(t)$

More Ex. 1:

Ex. 2: Sketch the curve represented by the parametric equations and write the corresponding rectangular equation by eliminating the parameter. Use your graphing utility to confirm your result. Complete the table.
$\int x(t)=t^{2}$

$$
y(t)=t
$$

t	$x(t)$	$y(t)$

Ex. 3: Sketch the curve represented by the parametric equations and write the corresponding rectangular equation by eliminating the parameter. Use your graphing utility to confirm your result. Complete the table.
$\left\{\begin{array}{l}x(\theta)=3 \cos (\theta) \\ y(\theta)=4 \sin (\theta)\end{array}\right.$ for $\theta \in\left[0, \frac{\pi}{2}\right]$

θ	$\mathrm{x}(\theta)$	$\mathrm{y}(\theta)$

Ex. 4: Sketch the curve represented by the parametric equations and write the corresponding rectangular equation by eliminating the parameter. Use your graphing utility to confirm your result. Complete the table.
$\left\{\begin{array}{l}x(t)=3 \sin (2 t) \\ y(t)=4 \cos (2 t)\end{array}\right.$ for $t \in\left[0, \frac{\pi}{2}\right]$

t	$x(t)$	$y(t)$

Compare on your graphing utility:

$$
\begin{aligned}
& x(t)=3 \cos \left(\frac{\pi}{2}-2 t\right) \\
& y(t)=4 \sin \left(\frac{\pi}{2}-2 t\right)
\end{aligned}
$$

Ex. 5: Find a set of parametric equations for the line that passes through the points $(1,4)$ and $(5,-2)$ and write the corresponding rectangular equation by eliminating the parameter. Use your graphing utility to confirm your result.

